Home
Search results “Classification algorithm in oracle data mining”
Oracle data mining tutorial, data mining techniques: classification
 
33:45
What is data mining? The Oracle Data Miner tutorial presents data mining introduction. Learn data mining techniques. More lessons, visit http://www.learn-with-video-tutorials.com/oracle-data-mining-tutorial-video
Oracle data mining tutorial, data mining techniques classification
 
33:45
What is data mining? The Oracle Data Miner tutorial presents data mining introduction. Learn data mining techniques.
Oracle's Machine Learning & Advanced Analytics 12.2 & Oracle Data Miner 4.2 New Features
 
46:53
Oracle's Machine Learning and Advanced Analytics 12.2 and Oracle Data Miner 4.2 New Features. This presentation highlights the new machine learning algorithms, features, functions and "differentiators" added to Oracle Database Release 12.2 and Oracle SQL Developer4.2. These features and functioned are "packaged" as part of the Oracle Advanced Analytics Database Option and Oracle Data Miner workflow UI on-premise and in the Oracle Database Cloud Service High and Extreme Editions. I hope you enjoy the video! Charlie Berger [email protected]
Views: 7272 Charlie Berger
INTRODUCTION TO CLASSIFICATION - DATA MINING
 
01:29
Classification consists of predicting a certain outcome based on a given input. In order to predict the outcome, the algorithm processes a training set containing a set of attributes and the respective outcome, usually called goal or prediction attribute. The algorithm tries to discover relationships between the attributes that would make it possible to predict the outcome. Next the algorithm is given a data set not seen before, called prediction set, which contains the same set of attributes, except for the prediction attribute – not yet known. The algorithm analyses the input and produces a prediction.
Views: 31318 Nina Canares
Oracle Data Miner/SQL Developer + R Integration via SQL Query node
 
15:46
This presentation and demo shows the integration capabilities of Oracle Data Miner/SQL Developer + Oracle R Enterprise integration.
Views: 8905 Charlie Berger
Oracle Data Miner 4.0/SQL Developer 4.0 Ext. - New Features
 
11:52
Oracle Data Miner 4.0 New Features demo and presentation
Views: 10497 Charlie Berger
NEW - Fraud and Anomaly Detection using Oracle Advanced Analytics Part 1 Concepts
 
11:03
This is Part 1 of my Fraud and Anomaly Detection using Oracle Advanced Analytics presentations and demos series. Hope you enjoy! www.twitter.com/CharlieDataMine
Views: 5809 Charles Berger
Boldon James - Data Classification
 
02:46
Boldon James guides you through the first step in protecting your data through its journey with Data Classification. Find Out More: http://www.boldonjames.com/solutions/data-classification/ LEARN MORE ABOUT BOLDON JAMES: Classification Overview: https://youtu.be/L9J3a2euJH4 Mobile Classifier: https://www.youtube.com/watch?v=7qDeXoT-_m8 Classification and McAfee DLP: https://www.youtube.com/watch?v=RHKp6LwPQm8 This video explains how you can prevent accidental data loss from happening through the use of Boldon James Classifier. Learn how Boldon James uses classifier classification labels and other tools to protect privileged data. STAY CONNECTED: LinkedIn: https://www.linkedin.com/company/boldon-james Twitter: http://twitter.com/boldonjames
Views: 5082 BoldonJamesTV
Mining Structured and Unstructured Data
 
36:59
Oracle Advanced Analytics (OAA) Database Option leverages Oracle Text, a free feature of the Oracle Database, to pre-process (tokenize) unstructured data for ingestion by the OAA data mining algorithms. By moving, parallelized implementations of machine learning algorithms inside the Oracle Database, data movement is eliminated and we can leverage other strengths of the Database such as Oracle Text (not to mention security, scalability, auditing, encryption, back up, high availability, geospatial data, etc.. This YouTube video presents an overview of the capabilities for combing and data mining structured and unstructured data, includes several brief demonstrations and instructions on how to get started--either on premise or on the Oracle Cloud.
Views: 2165 Charlie Berger
How SVM (Support Vector Machine) algorithm works
 
07:33
In this video I explain how SVM (Support Vector Machine) algorithm works to classify a linearly separable binary data set. The original presentation is available at http://prezi.com/jdtqiauncqww/?utm_campaign=share&utm_medium=copy&rc=ex0share
Views: 462230 Thales Sehn Körting
SSAS Data Mining Overview
 
19:20
Just an overview of SSAS Data Mining. Check out Microsoft's tutorial for more info: https://msdn.microsoft.com/en-us/library/ms167167(v=sql.120).aspx
Views: 1273 Randal Root
Data Mining - Decision Tree
 
10:05
Use a view to make predictions about bike purchases.
Views: 10804 Mike
Tanagra Data Mining
 
07:06
an "open source project" as every researcher can access to the source code, and add his own algorithms, as far as he agrees and conforms to the software distribution license.
Views: 13815 Emmanuel Felipe
Machine Learning with Oracle
 
35:47
Introduction - 0:00 Overview Machine Learning in Oracle - 1:31 Machine Learning theory - 6:04 Demonstration: preparation and building the model - 11:52 Demonstration: run the prediction and adapt the application - 26:24 How to get started - 33:33 Without a doubt Machine Learning / Artificial Intelligence is an incredibly powerful technology with a huge potential. It brings benefits across many industries and business functions: From better targeting in the marketing/sales domain to predictive maintenance in manufacturing. This video-webinar is a kickstart to Machine Learning. You will learn the required theoretical knowledge and then we'll go through a real-life example: intelligent sales with ML. We'll create our very first ML model, and use it to make an existing application intelligent with sales recommendations. After this webinar you will have the basic ingredients to apply ML to your own business cases! Note that you don't require any previous knowledge of ML to be able to understand this session. Powerpoint and background material can be found here: https://ptdrv.linkedin.com/cmaj4xt
Views: 4142 Jeroen Kloosterman
Data Mining with Weka (4.3: Classification by regression)
 
10:42
Data Mining with Weka: online course from the University of Waikato Class 4 - Lesson 3: Classification by regression http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/augc8F https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 25041 WekaMOOC
Genetic Algorithms Tutorial 06 - data mining + JAVA 8 + logical operators
 
38:47
Website + download source code @ http://www.zaneacademy.com
Views: 1839 zaneacademy
DATA MINING
 
35:03
Views: 36575 iimtnew
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 157543 Timothy DAuria
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning Algorithm | Edureka
 
30:19
** Machine Learning Training with Python: https://www.edureka.co/python ** This Edureka video will provide you with a detailed and comprehensive knowledge of Naive Bayes Classifier Algorithm in python. At the end of the video, you will learn from a demo example on Naive Bayes. Below are the topics covered in this tutorial: 1. What is Naive Bayes? 2. Bayes Theorem and its use 3. Mathematical Working of Naive Bayes 4. Step by step Programming in Naive Bayes 5. Prediction Using Naive Bayes Check out our playlist for more videos: http://bit.ly/2taym8X Subscribe to our channel to get video updates. Hit the subscribe button above. #MachineLearningUsingPython #MachineLearningTraning How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, please write back to us at [email protected] Call us at US: +18336900808 (Toll Free) or India: +918861301699 Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 6039 edureka!
Decision Tree Algorithm & Analysis | Machine Learning Algorithm | Data Science Training | Edureka
 
01:21:31
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Decision Tree tutorial will help you understand all the basics of Decision tree. This decision tree tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn decision tree analysis along with examples. Below are the topics covered in this tutorial: 1) Machine Learning Introduction 2) Classification 3) Types of classifiers 4) Decision tree 5) How does Decision tree work? 6) Demo in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #decisiontree #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 49914 edureka!
Lesson 4: Supervised Learning for Classification and Prediction
 
28:49
Lecture delivered by Dan McClary, Ph.D., Principal Product Manager, Big Data and Hadoop at Oracle
Views: 5983 OracleAcademyChannel
data mining oracle
 
11:30
Views: 756 Harry Quispe
In-Database Data Mining for Retail Market Basket Analysis Using Oracle Advanced Analytics
 
15:44
Market Basket Analysis presentation and demo using Oracle Advanced Analytics
Views: 10277 Charles Berger
How Oracle Uses CrowdFlower For Sentiment Analysis
 
41:57
Learn how Oracle uses CrowdFlower to train and perfect Machine Learning algorithms to build sentiment & other models that classify text.
Views: 695 Figure Eight
Introduction to Data Mining  (1/3)
 
13:34
http://www.creativecommit.com. This video gives a brief demo of the various data mining techniques. The demo mainly uses Microsoft SQL server 2008, BIDS 2008 and Excel for data mining
Views: 149890 creativecommIT
Big Data Analyics using Oracle Advanced Analytics12c and BigDataSQL
 
01:03:29
Big Data Analyics using Oracle Advanced Analytics12c and Oracle Big Data SQL webcast
Views: 4832 Charlie Berger
Database Clustering Tutorial 1 - Intro to Database Clustering
 
09:20
Read the Blog: https://www.calebcurry.com/blogs/database-clustering/intro-to-database-clustering Get ClusterControl: http://bit.ly/ClusterControl In this video we are going to be discussing database clustering and how to manage database clusters with ClusterControl. Database clustering is when you have multiple computers working together that are all used to store your data. There are four primary reasons you should consider clustering. Data redundancy, Load balancing (scalability) High availability. Monitoring and Automation That is an intro to a few of the reasons having a cluster is a good idea. Obviously, not everyone needs a cluster. A cluster can be overkill. But the best way to know is to learn more about them, so I’ll see you in the next video! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Support me! http://www.patreon.com/calebcurry Subscribe to my newsletter: http://bit.ly/JoinCCNewsletter Donate!: http://bit.ly/DonateCTVM2. ~~~~~~~~~~~~~~~Additional Links~~~~~~~~~~~~~~~ More content: http://CalebCurry.com Facebook: http://www.facebook.com/CalebTheVideoMaker Google+: https://plus.google.com/+CalebTheVideoMaker2 Twitter: http://twitter.com/calebCurry Amazing Web Hosting - http://bit.ly/ccbluehost (The best web hosting for a cheap price!)
Views: 15657 Caleb Curry
Microsoft Excel Data Mining: Classification
 
06:49
Microsoft Excel Data Mining: Classification. For more visit here: www.dataminingtools.net
Market Basket Analysis: Using Hive and Data Miner
 
08:10
In part two of two, Hive is used to perform a simple pairwise expansion of shopping baskets, as well as using Oracle Data Miner to build association rules. For more information: http://www.oracle.com/bigdata
Views: 98 Oracle Big Data
Data mining tutorial for beginners FREE Training 01
 
05:27
Published on Aug 2, 2014 1 intro data mining and scraping next tutorial here: http://youtu.be/gb4ufqFkT7A please comment below if you have any questions. Tq Category Education License Standard YouTube License
Views: 103861 Red Team Cyber Security
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 133966 edureka!
The Contextual Bandits Problem: A New, Fast, and Simple Algorithm
 
01:00:56
We study the general problem of how to learn through experience to make intelligent decisions. In this setting, called the contextual bandits problem, the learner must repeatedly decide which action to take in response to an observed context, and is then permitted to observe the received reward, but only for the chosen action. The goal is to learn through experience to behave nearly as well as the best policy (or decision rule) in some possibly very large and rich space of candidate policies. Previous approaches to this problem were all highly inefficient and often extremely complicated. In this work, we present a new, fast, and simple algorithm that learns to behave as well as the best policy at a rate that is (almost) statistically optimal. Our approach assumes access to a kind of oracle for classification learning problems which can be used to select policies; in practice, most off-the-shelf classification algorithms could be used for this purpose. Our algorithm makes very modest use of the oracle, which it calls far less than once per round, on average, a huge improvement over previous methods. These properties suggest this may be the most practical contextual bandits algorithm among all existing approaches that are provably effective for general policy classes. This is joint work with Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford and Lihong Li.
Views: 4411 Microsoft Research
Oracle Fast Data Mining: Real Time Knowledge Discovery for Predictive Decision Making
 
04:36
Fast Data as a different approach to Big Data for managing large quantities of "in-flight" data that help organizations get a jump on those business-critical decisions. Difference between Big Data and Fast Data is comparable to the amount of time you wait downloading a movie from an online store and playing the dvd instantly. Data Mining as a process to extract info from a data set and transform it into an understandable structure in order to deliver predictive, advanced analytics to enterprises and operational environments. The combination of Fast Data and Data Mining are changing the "Rules"
Views: 885 Nino Guarnacci
More Data Mining with Weka (3.4: Learning association rules)
 
10:22
More Data Mining with Weka: online course from the University of Waikato Class 3 - Lesson 4: Learning association rules http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/nK6fTv https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 12143 WekaMOOC
Introduction to Data Mining  (2/3)
 
13:00
http://www.creativecommit.com. This video gives a brief demo of the various data mining techniques. The demo mainly uses SQL server 2008, BIDS 2008 and Excel for data mining
Views: 26727 creativecommIT
Meta data  in 5 mins hindi
 
04:57
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 84993 Last moment tuitions
KEEL Data mining tool demo
 
34:02
KEEL Data minig tool Demo of installation and Working
Views: 3545 Manukumar K J
data mining methodology
 
03:23
Views: 1050 Allan Esser