Home
Search results “Data mining with r codes”
Learning Data Mining with R : Example – Using a Single Line of Code in R | packtpub.com
 
04:11
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2lXhDAx]. The aim of this video is to show how powerful R is as a data language. We will query an internal example dataset and show how it can be filtered and aggregated on. • Learn about the structure of the internal mtcars dataset • Filter on the dataset • Aggregate on the dataset For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 543 Packt Video
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 879018 David Langer
Rattle - Data Mining in R
 
25:47
Overview of using Rattle - a GUI data mining tool in R. Overview covers some of the basic operations that can be performed in Rattle such as loading data, exploring the data and applying some of the data mining algorithms on the data - all this without actually having to type any R code
Views: 35065 Melvin L
Association Rule Mining in R
 
13:30
This video is using Titanic data file that's embedded in R (see here: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/Titanic.html). You can find both the data and the code here: https://github.com/A01203249/YouTube-Videos.git. Use git clone to clone this repo locally and use the code.
Views: 46930 Ani Aghababyan
Rattle for Data Mining - Using R without programming (CRAN)
 
17:28
www.learnanalytics.in demostrates use of an free and open source platform to build sophisticated predictive models. We demonstrate using R package Rattle to do data analysis without writing a line of r code. We cover hypothesis testing, descriptive statistics, linear and logistic regression with a flavor of machine learning (Random Forest, SVM etc.). Also using graphs such as ROC curves and Area under curves (AUC) to compare various models. To download the dataset and follow on your own follow http://www.learnanalytics.in/datasets/Credit_Scoring.zip
Views: 42118 Learn Analytics
Code | Market Basket Analysis | Association Rules | R Programming
 
27:08
In my previous video I talked about the theory of Market basket analysis or association rules and in this video I have explained the code that you need to write to achieve the market basket analysis functionality in R. This will help you to develop your own market basket analysis or association rules application to mine the important rules which are present in the data.
Views: 12809 Data Science Tutorials
Datamining project using R progamming part1
 
07:51
code in R programming and ppt . Project:Stock predictor for pharmacy(Tablets). Data mining in R Studio
Views: 9997 Saiprasad Shettar
Simple web scraping using R and rvest library – 3 lines of code
 
06:51
Simple demo to illustrate how you can scrape web page content in R using the rvest library.
Views: 14153 Melvin L
Introduction to Event Log Mining with R
 
01:39:08
Event logs are everywhere and represent a prime source of Big Data. Event log sources run the gamut from e-commerce web servers to devices participating in globally distributed Internet of Things (IoT) architectures. Even Enterprise Resource Planning (ERP) systems produce event logs! Given the rich and varied data contained in event logs, mining these assets is a critical skill needed by every Data Scientist, Business/Data Analyst, and Program/Product Manager. At this meetup, presenter Dave Langer, will show how easy it is to get started mining your event logs using the OSS tools of R and ProM. Dave will cover the following during the presentation: • The scenarios and benefits of event log mining • The minimum data required for event log mining • Ingesting and analyzing event log data using R • Process Mining with ProM • Event log mining techniques to create features suitable for Machine Learning models • Where you can learn more about this very handy set of tools and techniques *R source code will be made available via GitHub here: https://github.com/EasyD/IntroToEventLogMiningMeetup Find out more about David here: https://www.meetup.com/data-science-dojo/events/235913034/ -- Learn more about Data Science Dojo here: https://hubs.ly/H0f8y2K0 See what our past attendees are saying here: https://hubs.ly/H0f8xNz0 -- Like Us: https://www.facebook.com/datasciencedojo/ Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/data-science-dojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo/ Vimeo: https://vimeo.com/datasciencedojo
Views: 5827 Data Science Dojo
Text Analytics With R | How to Connect Facebook with R | Analyzing Facebook in R
 
07:59
In this text analytics with R tutorial, I have talked about how you can connect Facebook with R and then analyze the data related to your facebook account in R or analyze facebook page data in R. Facebook has millions of pages and getting emotions and text from these pages in R can help you understand the mood of people as a marketer. Text analytics with R,how to connect facebook with R,analyzing facebook in R,analyzing facebook with R,facebook text analytics in R,R facebook,facebook data in R,how to connect R with Facebook pages,facebook pages in R,facebook analytics in R,creating facebook dataset in R,process to connect facebook with R,facebook text mining in R,R connection with facebook,r tutorial for facebook connection,r tutorial for beginners,learn R online,R beginner tutorials,Rprg
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 53751 edureka!
Text mining in R and Twitter Sentiment Analytics
 
02:17:01
- Learn how to Analyse sentiments on anything being said on Twitter - Get your own Twitter developer app key and pull tweets - Understand what is sentiment analytics and text mining - Create impressive word clouds - Map sentiments on any topic and break them into bar graphs
Views: 21146 Equiskill Insights LLP
R Data Mining Projects : Introduction to Data Visualization | packtpub.com
 
16:16
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2lVMHEP]. This video will walk you through the basics of data visualization along with how to create advanced data visualization using existing libraries in R programming language. • Use ggplot() • Change colors, themes and size of a graph For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 126 Packt Video
Basic Data Analysis in RStudio
 
25:56
This clip explains how to produce some basic descrptive statistics in R(Studio). Details on http://eclr.humanities.manchester.ac.uk/index.php/R_Analysis. You may also be interested in how to use tidyverse functionality for basic data analysis: https://youtu.be/xngavnPBDO4
Views: 120326 Ralf Becker
R Tutorial For Beginners | R Programming Tutorial l R Language For Beginners | R Training | Edureka
 
01:33:00
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R Tutorial (R Tutorial Blog: https://goo.gl/mia382) will help you in understanding the fundamentals of R tool and help you build a strong foundation in R. Below are the topics covered in this tutorial: 1. Why do we need Analytics ? 2. What is Business Analytics ? 3. Why R ? 4. Variables in R 5. Data Operator 6. Data Types 7. Flow Control 8. Plotting a graph in R Check out our R Playlist: https://goo.gl/huUh7Y Subscribe to our channel to get video updates. Hit the subscribe button above. #R #Rtutorial #Ronlinetraining #Rforbeginners #Rprogramming How it Works? 1. This is a 5 Week Instructor led Online Course, 30 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course edureka's Data Analytics with R training course is specially designed to provide the requisite knowledge and skills to become a successful analytics professional. It covers concepts of Data Manipulation, Exploratory Data Analysis, etc before moving over to advanced topics like the Ensemble of Decision trees, Collaborative filtering, etc. During our Data Analytics with R Certification training, our instructors will help you: 1. Understand concepts around Business Intelligence and Business Analytics 2. Explore Recommendation Systems with functions like Association Rule Mining , user-based collaborative filtering and Item-based collaborative filtering among others 3. Apply various supervised machine learning techniques 4. Perform Analysis of Variance (ANOVA) 5. Learn where to use algorithms - Decision Trees, Logistic Regression, Support Vector Machines, Ensemble Techniques etc 6. Use various packages in R to create fancy plots 7. Work on a real-life project, implementing supervised and unsupervised machine learning techniques to derive business insights - - - - - - - - - - - - - - - - - - - Who should go for this course? This course is meant for all those students and professionals who are interested in working in analytics industry and are keen to enhance their technical skills with exposure to cutting-edge practices. This is a great course for all those who are ambitious to become 'Data Analysts' in near future. This is a must learn course for professionals from Mathematics, Statistics or Economics background and interested in learning Business Analytics. - - - - - - - - - - - - - - - - Why learn Data Analytics with R? The Data Analytics with R training certifies you in mastering the most popular Analytics tool. "R" wins on Statistical Capability, Graphical capability, Cost, rich set of packages and is the most preferred tool for Data Scientists. Below is a blog that will help you understand the significance of R and Data Science: Mastering R Is The First Step For A Top-Class Data Science Career Having Data Science skills is a highly preferred learning path after the Data Analytics with R training. Check out the upgraded Data Science Course For more information, please write back to us at [email protected] Call us at US: 1844 230 6362(toll free) or India: +91-90660 20867 Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 387288 edureka!
Whatsapp chat sentiment analysis in R | Sudharsan
 
03:34
Whatsapp Chat Sentiment analysis using R programming! Subscribe to my channel for new and cool tutorials. You can also reach out to me on twitter: https://twitter.com/sudharsan1396 Code for this video: https://github.com/sudharsan13296/Whatsapp-analytics
Naive Bayes Classification with R | Example with Steps
 
14:55
Provides steps for applying Naive Bayes Classification with R. Data: https://goo.gl/nCFX1x R file: https://goo.gl/Feo5mT Machine Learning videos: https://goo.gl/WHHqWP Naive Bayes Classification is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 15109 Bharatendra Rai
Web Data Mining com R
 
01:15:35
Web Data Mining com R
Views: 1443 Antonio Correa
K Nearest Neighbor (kNN) Algorithm  | R Programming | Data Prediction Algorithm
 
16:37
In this video I've talked about how you can implement kNN or k Nearest Neighbor algorithm in R with the help of an example data set freely available on UCL machine learning repository.
Views: 34418 Data Science Tutorials
Text Analytics with R | How to Scrap Website Data for Text Analytics | Web Scrapping in R
 
09:48
In this text analytics with R tutorial, I have talked about how you can scrap website data in R for doing the text analytics. This can automate the process of web analytics so that you are able to see when the new info is coming, you just run the R code and your analytics will be ready. Web scrapping in R is done by using the rvest package. Text analytics with R,how to scrap website data in R,web scraping in R,R web scraping,learn web scraping in R,how to get website data in R,how to fetch web data in R,web scraping with R,web scraping in R tutorial,web scraping in R analytics,web scraping in r rvest,web scraping and r,web scraping regex,web scraping facebook in r,r web scraping rvest,web scraping in R,web scraper with r,web scraping in r pdf,web scraping avec and r,web scraping and r
Twitter text mining with R
 
06:50
You may visit my website for video and R codes. http://web.ics.purdue.edu/~jinsuh/analyticspractice-twitter.php
Views: 1044 Jinsuh Lee
Social Media Analytics - Twitter Analysis in R (Example @realDonaldTrump)
 
16:06
Case Study: Donald Trump Twitter (@realDonaldTrump) Analysis Click here to see how to link to Twitter database: https://www.youtube.com/watch?v=ebutXE4MJ3Y (UPDATED) Twitter Analytics in R codes Powerpoint can be downloaded at https://drive.google.com/open?id=0Bz9Gf6y-6XtTNDE5a2V0dXBjWVU How to process tweets with emojis in R? What if there is a gsub utf-8 invalid error? (Example Solution) 1. Use gsub to replace the emojis (utf-8 coding) codes. 2. See slide 7 in the Powerpoint file above.
Views: 5042 The Data Science Show
Introduction to Text Analytics with R: Overview
 
30:38
This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data is far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: - Tokenization, stemming, and n-grams - The bag-of-words and vector space models - Feature engineering for textual data (e.g. cosine similarity between documents) - Feature extraction using singular value decomposition (SVD) - Training classification models using textual data - Evaluating accuracy of the trained classification models Part 1 of this video series provides an introduction to the video series and includes specific coverage: - Overview of the spam dataset used throughout the series - Loading the data and initial data cleaning - Some initial data analysis, feature engineering, and data visualization Kaggle Dataset: https://www.kaggle.com/uciml/sms-spam... The data and R code used in this series is available via the public GitHub: https://github.com/datasciencedojo/tu... -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 3600+ employees from over 742 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Learn more about Data Science Dojo here: https://hubs.ly/H0f5JLp0 See what our past attendees are saying here: https://hubs.ly/H0f5JZl0 -- Like Us: https://www.facebook.com/datascienced... Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/data... Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_scienc... Vimeo: https://vimeo.com/datasciencedojo
Views: 59456 Data Science Dojo
Apriori Algorithm with R Studio
 
05:13
This is a video for RMD Sinhgad School of Engineering (BE-Computer) as a demonstration for one of the assignments of Business Analytics and Intelligence. Important Links: Ubuntu 16.04.2 LTS Download: https://www.ubuntu.com/download/desktop R installation instructions: https://www.datascienceriot.com/how-to-install-r-in-linux-ubuntu-16-04-xenial-xerus/kris/ R studio Download: https://www.rstudio.com/products/rstudio/download/ R Tutorial: http://tryr.codeschool.com/
Views: 6279 Varun Joshi
Random Forest in R - Classification and Prediction Example with Definition & Steps
 
30:30
Provides steps for applying random forest to do classification and prediction. R code file: https://goo.gl/AP3LeZ Data: https://goo.gl/C9emgB Machine Learning videos: https://goo.gl/WHHqWP Includes, - random forest model - why and when it is used - benefits & steps - number of trees, ntree - number of variables tried at each step, mtry - data partitioning - prediction and confusion matrix - accuracy and sensitivity - randomForest & caret packages - bootstrap samples and out of bag (oob) error - oob error rate - tune random forest using mtry - no. of nodes for the trees in the forest - variable importance - mean decrease accuracy & gini - variables used - partial dependence plot - extract single tree from the forest - multi-dimensional scaling plot of proximity matrix - detailed example with cardiotocographic or ctg data random forest is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 49642 Bharatendra Rai
Association Rules or Market Basket Analysis with R - An Example
 
10:43
Provides an example of steps involved in carrying out association rule analysis in R. Association rule analysis is also called market basket analysis or affinity analysis. Some examples of companies using this method include Amazon, Netflix, Ford, etc. Definitions for support, confidence and lift are also included. Also includes, - use of rules package and a priori function - reducing number of rules to manageable size by specifying parameter values - finding interesting and useful rules - finding and removing redundant rules - sorting rules by lift - visualizing rules using scatter plot, bubble plot and graphs R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 16062 Bharatendra Rai
R - Twitter Mining with R (part 1)
 
11:39
Twitter Mining with R part 1 takes you through setting up a connection with Twitter. This requires a couple packages you will need to install, and creating a Twitter application, which needs to be authorized in R before you can access tweets. We quickly go through this entire process which may take some flexibility on your part so be patient and be ready troubleshoot as details change with updates. Warning: You are going to face challenges setting up the twitter API connection. The steps for this part have been known to change slightly over time for a variety of reasons. Follow the general steps and expect a few errors along the way which you will have to troubleshoot. It is hard to solve these issues remotely from where I am.
Views: 63828 Jalayer Academy
R - Sentiment Analysis and Wordcloud with R from Twitter Data | Example using Apple Tweets
 
23:01
Provides sentiment analysis and steps for making word clouds with r using tweets about apple obtained from Twitter. Link to R and csv files: https://goo.gl/B5g7G3 https://goo.gl/W9jKcc https://goo.gl/khBpF2 Topics include: - reading data obtained from Twitter in a csv format - cleaning tweets for further analysis - creating term document matrix - making wordcloud, lettercloud, and barplots - sentiment analysis of apple tweets before and after quarterly earnings report R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 13544 Bharatendra Rai
Jupyter Project: Interacting between Python and R Libraries for Data Mining
 
19:20
Myles Gartland http://www.pyvideo.org/video/3542/jupyter-project This talk will cover using ipython (Jupyter Project) for python and non-python projects, and how to interact Python and R through rmagic (rpy2) package.
Views: 5738 Next Day Video
Learning Data Mining with R : Market Basket Analysis | packtpub.com
 
03:07
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2lXhDAx]. The aim of this video is to show a little example to motivate the attendee based on the standard market basket analysis. • Load and parse transaction data • Calculate measures on the data • Generate and inspect association rules For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 699 Packt Video
Text Analysis in R (using Twitter data)
 
13:18
Code on Github: https://github.com/msterkel/text-analysis Twitter API tutorial: https://analytics4all.org/2016/11/16/r-connect-to-twitter-with-r/
Views: 773 Matthew Sterkel
Data Mining using R | R Tutorial for Beginners | Data Mining Tutorial for Beginners 2018 | ExcleR
 
32:10
Data Mining Using R (sometimes called data or knowledge discovery) is the process of analyzing data from different perspectives and summarizing it into useful information. Data Mining Certification Training Course Content : https://www.excelr.com/data-mining/ Introduction to Data Mining Tutorials : https://youtu.be/uNrg8ep_sEI What is Data Mining? Big data!!! Are you demotivated when your peers are discussing about data science and recent advances in big data. Did you ever think how Flip kart and Amazon are suggesting products for their customers? Do you know how financial institutions/retailers are using big data to transform themselves in to next generation enterprises? Do you want to be part of the world class next generation organisations to change the game rules of the strategy making and to zoom your career to newer heights? Here is the power of data science in the form of Data mining concepts which are considered most powerful techniques in big data analytics. Data Mining with R unveils underlying amazing patterns, wonderful insights which go unnoticed otherwise, from the large amounts of data. Data mining tools predict behaviours and future trends, allowing businesses to make proactive, unbiased and scientific-driven decisions. Data mining has powerful tools and techniques that answer business questions in a scientific manner, which traditional methods cannot answer. Adoption of data mining concepts in decision making changed the companies, the way they operate the business and improved revenues significantly. Companies in a wide range of industries such as Information Technology, Retail, Telecommunication, Oil and Gas, Finance, Health care are already using data mining tools and techniques to take advantage of historical data and to create their future business strategies. Data mining can be broadly categorized into two branches i.e. supervised learning and unsupervised learning. Unsupervised learning deals with identifying significant facts, relationships, hidden patterns, trends and anomalies. Clustering, Principle Component Analysis, Association Rules, etc., are considered unsupervised learning. Supervised learning deals with prediction and classification of the data with machine learning algorithms. Weka is most popular tool for supervised learning. Topics You Will Learn… Unsupervised learning: Introduction to datamining Dimension reduction techniques Principal Component Analysis (PCA) Singular Value Decomposition (SVD) Association rules / Market Basket Analysis / Affinity Filtering Recommender Systems / Recommendation Engine / Collaborative Filtering Network Analytics – Degree centrality, Closeness Centrality, Betweenness Centrality, etc. Cluster Analysis Hierarchical clustering K-means clustering Supervised learning: Overview of machine learning / supervised learning Data exploration methods Basic classification algorithms Decision trees classifier Random Forest K-Nearest Neighbours Bayesian classifiers: Naïve Bayes and other discriminant classifiers Perceptron and Logistic regression Neural networks Advanced classification algorithms Bayesian Networks Support Vector machines Model validation and interpretation Multi class classification problem Bagging (Random Forest) and Boosting (Gradient Boosted Decision Trees) Regression analysis Tools You Will Learn… R: R is a programming language to carry out complex statistical computations and data visualization. R is also open source software and backed by large community all over the world who are contributing to enhancing the capability. R has many advantages over other tools available in the market and it has been rated No.1 among the data scientist community. Mode of Trainings : E-Learning Online Training ClassRoom Training --------------------------------------------------------------------------- For More Info Contact :: Toll Free (IND) : 1800 212 2120 | +91 80080 09704 Malaysia: 60 11 3799 1378 USA: 001-608-218-3798 UK: 0044 203 514 6638 AUS: 006 128 520-3240 Email: [email protected] Web: www.excelr.com
R programming for beginners – statistic with R (t-test and linear regression) and dplyr and ggplot
 
15:49
R programming for beginners - This video is an introduction to R programming in which I provide a tutorial on some statistical analysis (specifically using the t-test and linear regression). I also demonstrate how to use dplyr and ggplot to do data manipulation and data visualisation. Its R programming for beginners really and is filled with graphics, quantitative analysis and some explanations as to how statistics work. If you’re a statistician, into data science or perhaps someone learning bio-stats and thinking about learning to use R for quantitative analysis, then you’ll find this video useful. Importantly, R is free. If you learn R programming you’ll have it for life. This video was sponsored by the University of Edinburgh. Find out more about their programmes at http://edin.ac/2pTfis2 This channel focusses on global health and public health - so please consider subscribing if you’re someone wanting to make the world a better place – I’d love to you join this community. I have videos on epidemiology, study design, ethics and many more.
Spatial Regession in R 1: The Four Simplest Models
 
40:37
We run OLS (with spatial diagnostics), SLX, Spatial Error and Spatial Lag Models. We also run the spatial Hausman test. Along the way, we discover a bug in the R SLX code in the spdep package, and get it fixed. Very exciting! Download the file with the data and commands here: http://spatial.burkeyacademy.com/home/files/R%20Spatial%20Regression1.zip Link to the entire Spatial Statistics Playlist: https://www.youtube.com/playlist?list=PLlnEW8MeJ4z6Du_cbY6o08KsU6hNDkt4k See more at http://spatial.burkeyacademy.com My Website: http://www.burkeyacademy.com/ Support me on Patreon! https://www.patreon.com/burkeyacademy Talk to me on my SubReddit: https://www.reddit.com/r/BurkeyAcademy/
Views: 7979 BurkeyAcademy
Decision Tree Classification in R
 
19:21
This video covers how you can can use rpart library in R to build decision trees for classification. The video provides a brief overview of decision tree and the shows a demo of using rpart to create decision tree models, visualise it and predict using the decision tree model
Views: 70154 Melvin L
Market Basket Analysis | Association Rules | R Programming | Data Prediction Algorithm
 
10:37
In this video I've talked about the theory related to market basket analysis. Where I explained about its background and the components like support, confidence and lift. In the next video I'll talk about the code to achieve the association rules by applying market basket analysis in R.
Introduction to Text Analytics with R: Text Analytics Fundamentals
 
33:59
This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: - Tokenization, stemming, and n-grams - The bag-of-words and vector space models - Feature engineering for textual data (e.g. cosine similarity between documents) - Feature extraction using singular value decomposition (SVD) - Training classification models using textual data - Evaluating accuracy of the trained classification models Part 2 of this video series includes specific coverage of: - The importance of splitting data in to training and test datasets - Stratified sampling of imbalanced data using the caret package - Representing text data for the purposes of machine learning - Introduction to tokenization, stop words, and stemming - The bag-of-words model for text analytics - Text analytics considerations for data pre-processing The data and R code used in this series is available via the public GitHub: https://github.com/datasciencedojo/In... -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 3600+ employees from over 742 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Learn more about Data Science Dojo here: https://hubs.ly/H0f5JMj0 See what our past attendees are saying here: https://hubs.ly/H0f5JMr0 -- Like Us: https://www.facebook.com/datascienced... Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/data... Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_scienc... Vimeo: https://vimeo.com/datasciencedojo
Views: 20000 Data Science Dojo
Introduction to Text Analytics with R: SVD with R
 
34:17
This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: - Tokenization, stemming, and n-grams - The bag-of-words and vector space models - Feature engineering for textual data (e.g. cosine similarity between documents) - Feature extraction using singular value decomposition (SVD) - Training classification models using textual data - Evaluating accuracy of the trained classification models Part 8 of this video series includes specific coverage of: - Use of the irlba package to perform truncated SVD. - How to project a TF-IDF document vector into the SVD semantic space (i.e., LSA). - Comparison of model performance between a single decision tree and the mighty random forest. - Exploration of random forest tuning using the caret package. The data and R code used in this series is available via the public GitHub: https://github.com/datasciencedojo/In... -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 3600+ employees from over 742 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Learn more about Data Science Dojo here: https://hubs.ly/H0f5K5H0 See what our past attendees are saying here: https://hubs.ly/H0f5JTc0 -- Like Us: https://www.facebook.com/datascienced... Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/data... Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_scienc... Vimeo: https://vimeo.com/datasciencedojo
Views: 7424 Data Science Dojo
Support Vector Machine (SVM) with R - Classification and Prediction Example
 
16:57
Includes an example with, - brief definition of what is svm? - svm classification model - svm classification plot - interpretation - tuning or hyperparameter optimization - best model selection - confusion matrix - misclassification rate Machine Learning videos: https://goo.gl/WHHqWP svm is an important machine learning tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 33412 Bharatendra Rai
R - Association Rules - Market Basket Analysis (part 1)
 
28:02
Association Rules for Market Basket Analysis using arules package in R. The data set can be load from within R once you have installed and loaded the arules package. Association Rules are an Unsupervised Learning technique used to discover interesting patterns in big data that is usually unstructured as well.
Views: 52165 Jalayer Academy
Learning Data Mining with R : Hierarchical Clustering | packtpub.com
 
05:47
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2lXhDAx]. This video introduces the discipline of hierarchical clustering. • Recap of classification from the previous section • Description of the algorithm • Description of the result based on a cluster hierarchy For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 92 Packt Video
Different Data Mining Approaches for Forecasting Use of Bike Sharing System
 
05:46
R Codes are available on below link: https://github.com/mayurkmane/ADM-Project-A12-Group Document related to this data mining study is available on below link: https://www.dropbox.com/s/r5qw4mofej23gbg/Group-A12%20ADM%20Project.pdf?dl=0 https://ie.linkedin.com/in/mayurkmane
Views: 104 Mayur Mane
R Programming For Beginners | R Language Tutorial | R Tutorial For Beginners | Edureka
 
01:10:56
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R Programming Tutorial For Beginners (R Tutorial Blog: https://goo.gl/mia382) will help you in understanding the fundamentals of R and will help you build a strong foundation in R. Below are the topics covered in this tutorial: 1. Variables 2. Data types 3. Operators 4. Conditional Statements 5. Loops 6. Strings 7. Functions Check out our R Playlist: https://goo.gl/huUh7Y Subscribe to our channel to get video updates. Hit the subscribe button above. #R #Rtutorial #Ronlinetraining #Rforbeginners #Rprogramming How it Works? 1. This is a 5 Week Instructor led Online Course, 30 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka's Data Analytics with R training course is specially designed to provide the requisite knowledge and skills to become a successful analytics professional. It covers concepts of Data Manipulation, Exploratory Data Analysis, etc before moving over to advanced topics like the Ensemble of Decision trees, Collaborative filtering, etc. During our Data Analytics with R Certification training, our instructors will help you: 1. Understand concepts around Business Intelligence and Business Analytics 2. Explore Recommendation Systems with functions like Association Rule Mining , user-based collaborative filtering and Item-based collaborative filtering among others 3. Apply various supervised machine learning techniques 4. Perform Analysis of Variance (ANOVA) 5. Learn where to use algorithms - Decision Trees, Logistic Regression, Support Vector Machines, Ensemble Techniques etc 6. Use various packages in R to create fancy plots 7. Work on a real-life project, implementing supervised and unsupervised machine learning techniques to derive business insights - - - - - - - - - - - - - - - - - - - Who should go for this course? This course is meant for all those students and professionals who are interested in working in analytics industry and are keen to enhance their technical skills with exposure to cutting-edge practices. This is a great course for all those who are ambitious to become 'Data Analysts' in near future. This is a must learn course for professionals from Mathematics, Statistics or Economics background and interested in learning Business Analytics. - - - - - - - - - - - - - - - - Why learn Data Analytics with R? The Data Analytics with R training certifies you in mastering the most popular Analytics tool. "R" wins on Statistical Capability, Graphical capability, Cost, rich set of packages and is the most preferred tool for Data Scientists. Below is a blog that will help you understand the significance of R and Data Science: Mastering R Is The First Step For A Top-Class Data Science Career Having Data Science skills is a highly preferred learning path after the Data Analytics with R training. Check out the upgraded Data Science Course For more information, please write back to us at [email protected] Call us at US: 1844 230 6362(toll free) or India: +91-90660 20867 Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 270342 edureka!
Topic modeling with R and tidy data principles
 
26:21
Watch along as I demonstrate how to train a topic model in R using the tidytext and stm packages on a collection of Sherlock Holmes stories. In this video, I'm working in IBM Cloud's Data Science Experience environment. See the code on my blog here: https://juliasilge.com/blog/sherlock-holmes-stm/
Views: 8471 Julia Silge
Advanced Data Mining with Weka (3.4: Using R to run a classifier)
 
10:29
Advanced Data Mining with Weka: online course from the University of Waikato Class 3 - Lesson 4: Using R to run a classifier http://weka.waikato.ac.nz/ Slides (PDF): https://goo.gl/8yXNiM https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 2502 WekaMOOC
Advanced Data Mining projects with R : The Course Overview | packtpub.com
 
04:00
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2n53Vi6]. This video provides an overview of the entire course. For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 281 Packt Video
How to Perform K-Means Clustering in R Statistical Computing
 
10:03
In this video I go over how to perform k-means clustering using r statistical computing. Clustering analysis is performed and the results are interpreted. http://www.influxity.com
Views: 189901 Influxity

online dating break up
bnn dating programma
dating chat rooms pakistan
cod aw ranked matchmaking
iphone dating apps australia